19 research outputs found

    Intrinsic and extrinsic factors drive ontogeny of early-life at-sea behaviour in a marine top predator

    Get PDF
    Young animals must learn to forage effectively to survive the transition from parental provisioning to independent feeding. Rapid development of successful foraging strategies is particularly important for capital breeders that do not receive parental guidance after weaning. The intrinsic and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site after a brief suckling phase, and must develop foraging skills without external input. We collected location and dive data from recently-weaned grey seal pups from two regions of the United Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during their first months of independence at sea. Dive duration, depth, bottom time, and benthic diving increased over the first 40 days. The shape and magnitude of changes differed between regions. Females consistently had longer bottom times, and in the Celtic and Irish Seas they used shallower water than males. Regional sex differences suggest that extrinsic factors, such as water depth, contribute to behavioural sexual segregation. We recommend that conservation strategies consider movements of young naïve animals in addition to those of adults to account for developmental behavioural changes

    Navigating uncertain waters:a critical review of inferring foraging behaviour from location and dive data in pinnipeds

    Get PDF
    In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation

    From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long‐lived vertebrate

    Get PDF
    Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned, grey seal Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics, and conservation requirements

    Shipping noise in a dynamic sea:a case study of grey seals in the Celtic Sea

    Get PDF
    Shipping noise is a threat to marine wildlife. Grey seals are benthic foragers, and thus experience acoustic noise throughout the water column, which makes them a good model species for a case study of the potential impacts of shipping noise. We used ship track data from the Celtic Sea, seal track data and a coupled ocean-acoustic modelling system to assess the noise exposure of grey seals along their tracks. It was found that the animals experience step changes in sound levels up to ~20dB at a frequency of 125Hz, and ~10dB on average over 10-1000Hz when they dive through the thermocline, particularly during summer. Our results showed large seasonal differences in the noise level experienced by the seals. These results reveal the actual noise exposure by the animals and could help in marine spatial planning

    Resolving issues with environmental impact assessment of marine renewable energy installations

    Get PDF
    Growing concerns about climate change and energy security have fueled a rapid increase in the development of marine renewable energy installations (MREIs). The potential ecological consequences of increased use of these devices emphasizes the need for high quality environmental impact assessment (EIA). We demonstrate that these processes are hampered severely, primarily because ambiguities in the legislation and lack of clear implementation guidance are such that they do not ensure robust assessment of the significance of impacts and cumulative effects. We highlight why the regulatory framework leads to conceptual ambiguities and propose changes which, for the most part, do not require major adjustments to standard practice. We emphasize the importance of determining the degree of confidence in impacts to permit the likelihood as well as magnitude of impacts to be quantified and propose ways in which assessment of population-level impacts could be incorporated into the EIA process. Overall, however, we argue that, instead of trying to ascertain which particular developments are responsible for tipping an already heavily degraded marine environment into an undesirable state, emphasis should be placed on better strategic assessment.Publisher PDFPeer reviewe

    SOWFIA Project - Work Package 3 Interim Report

    Get PDF
    The Streamlining of Ocean Wave Farms Impact Assessment (SOWFIA) Project (IEE/09/809/ SI2.558291) is an EU Intelligent Energy Europe (IEE) funded project that draws together ten partners, across eight European countries, who are actively involved with planned wave farm test centres. The SOWFIA project aims to achieve the sharing and consolidation of pan-European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. Through project workshops, meetings, on-going communication and networking amongst project partners, ideas and experiences relating to IA and policy are being shared, and co-ordinated studies addressing key questions for wave energy development are being carried out. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves. By utilising the findings from technology-specific monitoring at multiple sites, SOWFIA will accelerate knowledge transfer and promote European-wide expertise on environmental and socio-economic impact assessments of wave energy projects. In this way, the development of the future, commercial phase of offshore wave energy installations will benefit from the lessons learned from existing smaller-scale developments

    Predicting the exposure of diving grey seals to shipping noise.

    Get PDF
    There is high spatial overlap between grey seals and shipping traffic, and the functional hearing range of grey seals indicates sensitivity to underwater noise emitted by ships. However, there is still very little data regarding the exposure of grey seals to shipping noise, constraining effective policy decisions. Particularly, there are few predictions that consider the at-sea movement of seals. Consequently, this study aimed to predict the exposure of adult grey seals and pups to shipping noise along a three-dimensional movement track, and assess the influence of shipping characteristics on sound exposure levels. Using ship location data, a ship source model, and the acoustic propagation model, RAMSurf, this study estimated weighted 24-h sound exposure levels (10-1000 Hz) (SELw). Median predicted 24-h SELw was 128 and 142 dB re 1 μPa2s for the pups and adults, respectively. The predicted exposure of seals to shipping noise did not exceed best evidence thresholds for temporary threshold shift. Exposure was mediated by the number of ships, ship source level, the distance between seals and ships, and the at-sea behaviour of the seals. The results can inform regulatory planning related to anthropogenic pressures on seal populations

    Predictive models of cetacean distributions off the west coast of Scotland

    Get PDF
    The main purpose of this study was to produce and test the reliability of predictive models of cetacean distributions off the west coast of Scotland. Passive acoustic and visual surveys were carried out from platforms of opportunity between 2003 and 2005. Acoustic identifications were made primarily of harbour porpoises (Phocoena phocoena), delphinids, and sperm whales (Physeter macrocephalus). Generalised Additive Models (GAMs) were used to relate species’ distributions to a range of environmental variables over a range of temporal and spatial scales. Predictive models of delphinid distributions showed both inter-annual and inter-month variations. Combining all data for all months and years resulted in a model that combined the environmental influences from each monthly and yearly model. Overall, delphinids were found to associate with the deep (> 400m) warm water (10.5°C-12.5°C), and in areas of deep thermocline. Relationships between sperm whales and environmental variables were consistent over changes in grain size (9 km or 18 km), but not between areas. Although sperm whales were distributed in deep water characterised by weak thermoclines and strong haloclines in the most northerly area (Faroe-Shetland Channel), they were found in deep productive areas with cold surface temperature in the more southerly waters (Rockall Trough). Within the southern Inner Hebrides, high use areas for harbour porpoises were consistently predicted over time (in years) and with differing survey techniques (acoustic versus visual), but not over space (southern Inner Hebrides versus whole of the Inner Hebrides). Harbour porpoises were mainly distributed in areas with low tidal currents and with higher detection rates during spring tides. The use of prey as a predictor variable within models of delphinid distribution shows some promise: there were correlations between delphinid and herring (Clupea harengus) in shelf-waters in 2005 but not in 2004. These models can be used in mitigating acoustic threats to cetaceans in predicted high use areas off the west coast of Scotland

    Predictive models of cetacean distributions off the west coast of Scotland

    No full text
    The main purpose of this study was to produce and test the reliability of predictive models of cetacean distributions off the west coast of Scotland. Passive acoustic and visual surveys were carried out from platforms of opportunity between 2003 and 2005. Acoustic identifications were made primarily of harbour porpoises (Phocoena phocoena), delphinids, and sperm whales (Physeter macrocephalus). Generalised Additive Models (GAMs) were used to relate species’ distributions to a range of environmental variables over a range of temporal and spatial scales. Predictive models of delphinid distributions showed both inter-annual and inter-month variations. Combining all data for all months and years resulted in a model that combined the environmental influences from each monthly and yearly model. Overall, delphinids were found to associate with the deep (> 400m) warm water (10.5°C-12.5°C), and in areas of deep thermocline. Relationships between sperm whales and environmental variables were consistent over changes in grain size (9 km or 18 km), but not between areas. Although sperm whales were distributed in deep water characterised by weak thermoclines and strong haloclines in the most northerly area (Faroe-Shetland Channel), they were found in deep productive areas with cold surface temperature in the more southerly waters (Rockall Trough). Within the southern Inner Hebrides, high use areas for harbour porpoises were consistently predicted over time (in years) and with differing survey techniques (acoustic versus visual), but not over space (southern Inner Hebrides versus whole of the Inner Hebrides). Harbour porpoises were mainly distributed in areas with low tidal currents and with higher detection rates during spring tides. The use of prey as a predictor variable within models of delphinid distribution shows some promise: there were correlations between delphinid and herring (Clupea harengus) in shelf-waters in 2005 but not in 2004. These models can be used in mitigating acoustic threats to cetaceans in predicted high use areas off the west coast of Scotland.EThOS - Electronic Theses Online ServiceNatural Environment Research CouncilDefence Science and Technology LaboratoryGBUnited Kingdo

    Mark–recapture of individually distinctive calls—a case study with signature whistles of bottlenose dolphins (Tursiops truncatus)

    No full text
    Robust abundance estimates of wild animal populations are needed to inform management policies and are often obtained through mark–recapture (MR) studies. Visual methods are commonly used, which limits data collection to daylight hours and good weather conditions. Passive acoustic monitoring offers an alternative, particularly if acoustic cues are naturally produced and individually distinctive. Here we investigate the potential of using individually distinctive signature whistles in a MR framework and evaluate different components of study design. We analyzed signature whistles of common bottlenose dolphins, Tursiops truncatus, using data collected from static acoustic monitoring devices deployed in Walvis Bay, Namibia. Signature whistle types (SWTs) were identified using a bout analysis approach (SIGnature IDentification [SIGID]—Janik et al. 2013). We investigated spatial variation in capture by comparing 21 synchronized recording days across four sites, and temporal variation from 125 recording days at one high-use site (Aphrodite Beach). Despite dolphin vocalizations (i.e., echolocation clicks) being detected at each site, SWTs were not detected at all sites and there was high variability in capture rates among sites where SWTs were detected (range 0–21 SWTs detected). At Aphrodite Beach, 53 SWTs were captured over 6 months and discovery curves showed an initial increase in newly detected SWTs, approaching asymptote during the fourth month. A Huggins closed capture model constructed from SWT capture histories at Aphrodite Beach estimated a population of 54–68 individuals from acoustic detection, which overlaps with the known population size (54–76 individuals—Elwen et al. 2019). This study demonstrates the potential power of using signature whistles as proxies for individual occurrence and in MR abundance estimation, but also highlights challenges in using this approach
    corecore